Древнейшие египетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве домов, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому в настоящее время знаний о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов, что подтверждается тем, что греческие математики учились у египтян[C 1].

Основные сохранившиеся источники: папирус Ахмеса, он же папирус Ринда (84 математические задачи), и московский папирус Голенищева (25 задач), оба из Среднего царства, времени расцвета древнеегипетской культуры. Авторы текста нам неизвестны.

Все задачи из папируса Ахмеса (записан ок. 1650 года до н. э.) имеют прикладной характер и связаны с практикой строительства, размежеванием земельных наделов и т. п. Задачи сгруппированы не по методам, а по тематике. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами и аликвотными дробями, пропорциональное деление, нахождение отношений, возведение в разные степени, определение среднего арифметического, арифметические прогрессии, решение уравнений первой и второй степени с одним неизвестным[9].

Полностью отсутствуют какие бы то ни было объяснения или доказательства. Искомый результат либо даётся прямо, либо приводится краткий алгоритм его вычисления.

Такой способ изложения, типичный для науки стран древнего Востока, наводит на мысль о том, что математика там развивалась путём индуктивных обобщений и догадок, не образующих никакой общей теории. Тем не менее, в папирусе есть целый ряд свидетельств того, что математика в Древнем Египте тех лет имела или по крайней мере начинала приобретать теоретический характер. Так, египетские математики умели извлекать корни и возводить в степень, решать уравнения, были знакомы с арифметической и геометрической прогрессией и даже владели зачатками алгебры: при решении уравнений специальный иероглиф «куча» обозначал неизвестное.
Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более 500 тыс., из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства. Отметим, что корни культуры вавилонян были в значительной степени унаследованы от шумеров — клинописное письмо, счётная методика и т. п.

Вавилонская расчётная техника была намного совершеннее египетской, а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии. При решении применялись пропорции, средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян. Линейные и квадратные уравнения решались ещё в эпоху Хаммурапи; при этом использовалась геометрическая терминология (произведение ab называлось площадью, abc — объёмом, и т. д.). Многие значки для одночленов были шумерскими, из чего можно сделать вывод о древности этих алгоритмов; эти значки употреблялись, как буквенные обозначения неизвестных в нашей алгебре. Встречаются также кубические уравнения и системы линейных уравнений. Венцом планиметрии была теорема Пифагора, известная ещё в эпоху Хаммурапи.
Математика в современном понимании этого слова родилась в Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов (астрология, нумерология и т. п.). Математической теории в полном смысле этого слова не было, дело ограничивалось сводом эмпирических правил, часто неточных или даже ошибочных.

Греки подошли к делу с другой стороны.

Во-первых, пифагорейская школа выдвинула тезис «Числа правят миром»[C 2]. Или, как сформулировали эту же мысль два тысячелетия спустя: «Природа разговаривает с нами на языке математики» (Галилей). Это означало, что истины математики есть в известном смысле истины реального бытия.


Муза геометрии (Лувр)
Во-вторых, для открытия таких истин пифагорейцы разработали законченную методологию. Сначала они составили список первичных, интуитивно очевидных математических истин (аксиомы, постулаты). Затем с помощью логических рассуждений (правила которых также постепенно унифицировались) из этих истин выводились новые утверждения, которые также обязаны быть истинными. Так появилась дедуктивная математика.

Греки проверили справедливость этого тезиса во многих областях: астрономия, оптика, музыка, геометрия, позже — механика. Всюду были отмечены впечатляющие успехи: математическая модель обладала неоспоримой предсказательной силой.

Попытка пифагорейцев положить в основу мировой гармонии целые числа (и их отношения) была поставлена под сомнение после того, как были обнаружены иррациональные числа. Платоновская школа (IV век до н. э.) выбрала иной, геометрический фундамент математики (Евдокс Книдский). На этом пути были достигнуты величайшие успехи античной математики (Евклид, Архимед, Аполлоний Пергский и другие).

Греческая математика впечатляет прежде всего богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних. Зачатки анализа заметны у Архимеда, корни алгебры — у Диофанта, аналитическая геометрия — у Аполлония и т. д. Но главное не в этом. Два достижения греческой математики далеко пережили своих творцов.

Первое — греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики (гарантирующих истинность выводов при условии, что истинны предпосылки).

Второе — они провозгласили, что законы природы постижимы для человеческого разума, и математические модели — ключ к их познанию.

В этих двух отношениях древнегреческая математика вполне родственна современной.
Последнее изменение: Thursday 2 June 2016, 13:46